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Abstract—Algebraic multigrid (AMG) is a popular solver for
large-scale scientific computing and an essential component of
many simulation codes. AMG has shown to be extremely efficient
on distributed-memory architectures. However, when executed on
modern multicore architectures, we face new challenges that can
significantly deteriorate AMG’s performance. We examine its per-
formance and scalability on three disparate multicore architectures:
a cluster with four AMD Opteron Quad-core processors per node
(Hera), a Cray XT5 with two AMD Opteron Hex-core processors
per node (Jaguar), and an IBM BlueGene/P system with a single
Quad-core processor (Intrepid). We discuss our experiences on these
platforms and present results using both an MPI-only and a hybrid
MPI/OpenMP model. We also discuss a set of techniques that helped
to overcome the associated problems, including thread and process
pinning and correct memory associations.

I. INTRODUCTION

Sparse iterative linear solvers are a critical part of many simula-
tion codes and often account for a significant fraction of their total
run times. Therefore, the performance and scalability of linear
solvers on modern multicore machines is of great importance for
enabling large-scale simulations on these new high-performance
architectures. Furthermore, of particular concern for multicore
architectures is that for many applications, as the number of cores
per node increases, the linear solver time becomes an increasingly
larger portion of the total application time [1]. In other words,
under strong scaling the linear solver scales more poorly than the
remainder of the application code.

The AMG solver in hypre [2], called BoomerAMG, has ef-
fective coarse-grain parallelism and minimal inter-processor com-
munication, and, therefore, demonstrates good weak scalability on
distributed memory machines (as shown for weak scaling on Blue-
Gene/L using 125,000 processors [3]). However, the emergence of
multicore architectures in high-performance computing has forced
a re-examination of the hypre library and the BoomerAMG code.
In particular, BoomerAMG’s performance can be harmed by the
new node architectures due to multiple cores and sockets per node,
different levels of cache sharing, multiple memory controllers,
non-uniform memory access times, and reduced bandwidth. With
the MPI-only model expected to be increasingly insufficient as the
number of cores per node increases, we have turned our focus to a
hybrid programming model for our AMG code, in which a subset
of or all cores on a node operate through a shared memory pro-
gramming model like OpenMP. In practice, few high-performance
linear solver libraries have implemented a hybrid MPI/OpenMP
approach, and for AMG in particular, obtaining effective multicore
performance has not been sufficiently addressed.

In this paper we present a performance study of BoomerAMG
on three radically different multicore architectures: a cluster with
four AMD Opteron Quad-core processors per node (Hera), a Cray

XT5 with two AMD Opteron Hex-core processors (Jaguar), and
an IBM BlueGene/P system with a single Quad-core processor
(Intrepid). We discuss the performance of BoomerAMG on each
architecture (Section V) and detail the modifications that were
necessary to improve performance (i.e., the “lessons learned”,
Section VI). In particular, we make the following contributions:

• A comprehensive study of the performance of AMG on the
three leading classes of HPC platforms;

• An evaluation of the threading performance of AMG using
a hybrid OpenMP/MPI programming model;

• Optimization techniques, including a multi-core support li-
brary, that significantly improves both performance and scal-
ability of AMG;

• A set of lessons learned from our experience of running a
hybrid OpenMP/MPI application that applies well beyond the
AMG application.

The remainder of this paper is organized as follows: in Sec-
tion II we present an overview of the AMG solver and its
implementation. In Section III we introduce the two test problems
we use for our study, followed by the three evaluation platforms in
Section IV. In Section V we provide a detailed discussion of the
performance of AMG on the three platforms, and in Section VI
we discuss lessons learned as well as optimization steps. In
Section VII we conclude with a few final remarks.

II. ALGEBRAIC MULTIGRID (AMG)

Algebraic multigrid (AMG) methods [4], [5], [6] are popular
in scientific computing due to their robustness when solving large
unstructured sparse linear systems of equations. In particular,
hypre’s BoomerAMG plays a critical role in a number of diverse
simulation codes. For example, at Lawrence Livermore National
Laboratory (LLNL), BoomerAMG is used in simulations of elastic
and plastic deformations of explosive materials and in structural
dynamics codes. Its scalability has enabled the simulation of
problem resolutions that were previously unattainable. Elsewhere,
BoomerAMG has been critical in the large-scale simulation of
accidental fires and explosions, the modeling of fluid pressure in
the eye, the speed-up of simulations for Maxillo-facial surgeries to
correct deformations [7], sedimentary basin simulations [8], and
the simulation of magnetohydrodynamics (MHD) formulations of
fusion plasmas (e.g., the M3D code from the Princeton Plasma
Physics Laboratory).

In this section, we first give a brief overview of multigrid
methods, and AMG in particular, and then describe our imple-
mentation.



A. Algorithm overview

Multigrid is an iterative method, and, as such, a multigrid solver
starts with an initial guess at the solution and repeatedly generates
a new or improved guess until that guess is close in some sense to
the true solution. Multigrid methods generate improved guesses
by utilizing a sequence of smaller grids and relatively inexpensive
smoothers. In particular, at each grid level, the smoother is applied
to reduce the high-frequency error, then the improved guess is
transferred to a smaller, or coarser, grid. The smoother is applied
again on the coarser level, and the process continues until the
coarsest level is reached where a very small linear system is
solved. The goal is to have significantly eliminated error once
the coarsest level has been reached. The improved guess is then
transferred back up ( interpolated ) to the finest grid, resulting in a
new guess on that original grid. See Figure 1. Effective interplay
between the smoothers and the coarse-grid correction process is
critical for good convergence.

The advantage of a multilevel solver is two-fold. By operating
on a sequence of coarser grids, much of the computation takes
place on smaller problems and is, therefore, computationally
cheaper. Second, and perhaps most importantly, if the multilevel
solver is designed well, the computational cost will only depend
linearly on the problem size. In other words, a sparse linear
system with N unknowns is solved with O(N ) computations. This
translates into a scalable solver algorithm, and, for this reason,
multilevel methods are often called optimal. In contrast, many
common iterative solvers (e.g., Conjugate Gradient) have the non-
optimal property whereby the number of iterations required to
converge to the solution increases with increasing problem size.
An algorithmically scalable solution is particularly attractive for
parallel computing because distributing the computation across a
parallel machine enables the solution of increasing larger systems
of equations. While multigrid methods can be used as standalone
solvers, they are more frequently used in combination with a
simpler iterative solver (e.g., Conjugate Gradient or GMRES), in
which case they are referred to as preconditioners.

AMG is a particular multigrid method with the distinguishing
feature that no problem geometry is needed; the “grid” is simply
a set of variables. This flexibility is useful for situations when
the grid is not known explicitly or is unstructured. As a result,
coarsening and interpolation processes are determined entirely
based on the entries of the matrix, and AMG is a fairly complex
algorithm.

AMG has two separate phases, the setup and the solve phase.
In the setup phase, the coarse grids, interpolation operators, and
coarse-grid operators must all be determined for each of the
coarse-grid levels. AMG coarsening is non-trivial, particularly
in parallel where care must be taken at processor boundaries
(e.g., see [9], [10]). Coarsening algorithms typically determine the
relative strength of the connections between the unknowns based
on the size of matrix entries and often employ an independent set
algorithm. Once the coarse grid is chosen for a particular level,
the interpolation operator is determined. Forming interpolation
operators in parallel is also rather complex, particularly for the
long-range variety that are required to keep memory requirements
reasonable on large numbers of processors (e.g., see [11]). Finally
the coarse grid operators (coarse-grid representations of the fine-
grid matrix) must be determined in the setup phase. These are
formed via a triple matrix product. While computation time for

Fig. 1: Illustration of one multigrid cycle.

the AMG setup phase is problem dependent, it is certainly non-
negligible and may have a significant effect on the total run time.
In fact, if a problem converges rapidly, the setup time may even
exceed the solve time.

The AMG solve phase performs the multilevel iterations (often
referred to as cycles). The primary components of the solve
phase are applying smoother, which is similar to a matrix-vector
multiply (MatVec), and restricting and interpolating the error
(both MatVecs). AMG is commonly used as a preconditioner for
Conjugate Gradient or GMRES, and in that case, the MatVec
time dominates the solve phase run-time (roughly 60%), followed
by the smoother (roughly 30%). Many reasonable algorithmic
choices may be made for each AMG component (e.g., coarsening,
interpolation, and smoothing), and the choice affects the con-
vergence rate. For example, some coarsening algorithms coarsen
“aggressively” [6], which results in lower memory usage but
often a higher number of iterations. The total solve time is, of
coarse, directly related to the number of iterations required for
convergence.

B. Implementation

In this paper, we use a slightly modified version of the AMG
code included in the hypre software library [12]. While AMG
provides a wide range of input parameters, which can be used
to fine tune the application, we chose the following options to
generate the results in this paper. For coarsening, we use PMIS
[13] and employ aggressive coarsening on the first level to achieve
low complexities and improved scalability. For interpolation we
use multipass interpolation [6], [14] on the first coarse level and
extended+i(4) interpolation [11] on the remaining levels. The
smoother is a hybrid symmetric Gauss-Seidel parallel smoother,
and, because AMG is most commonly used as a preconditioner
for both symmetric and nonsymmetric problems, our experiments
use AMG as a preconditioner for GMRES(10).

Some parallel aspects of the AMG algorithm are dependent
on the number of tasks and the domain partitioning among MPI
tasks and OpenMP threads. The parallel coarsening algorithm
and hybrid Gauss-Seidel parallel smoother are two examples
of such components. Therefore, one cannot expect the number
of iterations to necessarily be equivalent when, for example,
comparing an experimental setup with 16 threads per node to
one with 16 tasks per node. For this reason, we use average cycle
times (instead of the total solve time) where appropriate to ensure
a fair comparison.

While we tested both MPI and OpenMP in the early stages
of BoomerAMG’s development, we later on focused on MPI
due to disappointing performance of OpenMP at that time. We
use a parallel matrix data structure that was mainly developed



with MPI in mind. Matrices are assumed to be distributed across
p processors in contiguous blocks of rows. On each processor,
the matrix block is split into two parts, one of which contains
the coefficients that are local to the processor. The second part,
which is generally much smaller than the local part, contains the
coefficients whose column indices point to rows stored on other
processors. Each part is stored in compressed sparse row (CSR)
format. The data structure also contains a mapping that maps the
local indices of the off-processor part to global matrix indices
as well as a information needed for communication. A complete
description of the parallel matrix structure used can be found
in [15]. The AMG algorithm requires various matrices besides the
original matrix, such as the interpolation operator and the coarse
grid operator. While the generation of the local parts of these
operators generally can be performed as in the serial case, the
generation of the off-processor part as well as the communication
package and mapping of the original matrix is fairly complex and
depends on the amount of ghostlayer points, i.e. those points that
are immediate neighbors to a point i but are located on another
processor. Therefore, a large number of ghostlayer points, which
can be caused by a non-optimal partitioning, will not only affect
communication but also increase computation. On the other hand,
replacing pk MPI tasks by p MPI tasks with k OpenMP threads
each that do not require ghostlayer points could lead to improved
performance. We will evaluate the number of ghostlayer points on
the first level for the problems considered here in the following
section.

Our recent efforts with the AMG code have been aimed at
increasing the use of OpenMP in the code. The solve phase,
composed primarily of the MatVec and Smoother kernels, can
be threaded in a straightforward manner (contiguous subsets of
a processor’s rows are operated on by each thread). The setup
phase, however, is more complex and has not been completely
threaded. The triple matrix product that forms the coarse-grid
operator is threaded. Only a part of the interpolation operators
is threaded, since the data structure is not particularly OpenMP
friendly. This is due to the fact that the matrices are compressed
and the total number of nonzeros for the operators that need
to be generated is not known ahead of time. We currently have
no coarsening routine that uses OpenMP, and therefore used the
fastest coarsening algorithm available, PMIS, to decrease the time
spent in the nonthreaded part of the setup. This algorithm leads to
somewhat increased number of iterations and decreased scalability
compared to HMIS.

III. TEST PROBLEMS

We use two test problems for our performance study.

A. Problem descriptions

The first is a 3D Laplace problem on a box with Dirichlet
boundary conditions with a seven-point stencil generated by finite
differences. We refer to this problem as “Laplace”. When solving
this problem on Hera and Intrepid, the domain is a unit cube,
however on Jaguar, the domain size is a box of size N×N×0.9N ,
to allow more optimal partitioning when using 6 or 12 threads per
node.

We designed a second problem to represent a wider range of
applications. This problem is a 3D diffusion problem on a more
complicated grid. The 2D projection of this grid is shown in
Figure 2 (the grid extends equally out of the page in the third

0 1 2 3
4 5

7

6

0 : 4
-1

-1 -1

-1
0 0 1 : 400

-100

-100

-100

-100
0 0 2 : 0.4

-0.1

-0.1
-0.1

0
-0.1

7 : 20.2
-10

-10
-0.1 -0.1

3 : 4
-1

-1

-1

-1
0 0

4 : 4
-1

-1
-1 -1
0

5,6 : 4
-1

-1
-1 -1

Fig. 2: The “MG” test problem grid and its associated finite
difference stencils.

dimension with 4 points). We refer to this problem as “MG”
because of the shape of the grid. This problem also has jumps
as well as anisotropies, which appear in many applications. The
finite difference stencil for each of the eight parts of the grids are
given in the figure as well. In particular, part 7 is anisotropic and
there are jumps between parts 0-3 in the “M” part of the grid.
Each part has 48 grid points. This grid can then be further refined
by refinement factors in each direction to generate large problems
for many processors.

B. Ghostlayer Analysis

Our goal is to evaluate the number of ghostlayer points for each
MPI task for both test problems and then analyze the effect on
them, when we use threading within MPI tasks. We consider here
only ghostlayer points in the first layer, i.e., immediate neighbor
points of a point i that are located on a neighbor processor. Note
that this analysis only applies to the first AMG level, since the
matrices on coarser levels will have larger stencils, but fewer
points within each MPI task. However since we aggressively
coarsen the first grid, leading to significantly smaller coarse grids,
the evaluation of the finest level generally requires the largest
amount of computations and should take more than half of the
time. Also, choosing a nonoptimal partitioning for the MPI tasks
will generally lead to nonoptimal partitionings on the lower levels.

Let us first consider the Laplace problem. Assume that there
are pxpypz cores and a grid of size Nx × Ny × Nz partitioned
into px × py × pz subdomains. For simplicity assume that Nk is
divisible by pk for k = x, y, z. Since we want to consider both
OpenMP threads and MPI tasks, we introduce parameters sk, and
p̃k, k = x, y, z, with p̃k = pk

sk
. Now the number of MPI tasks is

p̃xp̃yp̃z and the number of threads per MPI task is s = sxsysz .
This leads to a subdomain size of Nx

p̃x
× Ny

p̃y
× Nz

p̃z
for each MPI

task, leading to 2(Nx

p̃x

Ny

p̃y
+ Nx

p̃x

Nz

p̃z
+ Ny

p̃y

Nz

p̃z
) ghost layer points. In

order to get the complete number of ghostlayer points one needs
to multiply the number of ghost layer points for each MPI task by
the number of total MPI tasks, p̃xp̃yp̃z and subtract the surface
of the complete domain, which is 2(NxNy + NxNz + NyNz).

Now we can define the total number of ghostlayer points for
the Laplace problem

νL(s) = 2(
pz

sz
− 1)NxNy + 2(

py

sy
− 1)NxNz + 2(

px

sx
− 1)NyNz.

(1)
For the Laplace problem on Hera and Intrepid, we choose the
following values for the parameters: N = Nx = Ny = Nz ,
px = py = 2p, and pz = 4p. Inserting these values in (1), we
obtain νL(s) = [( 8

sz
+ 4

sy
+ 4

sy
)p−6]N2. We are interested in the



effect of threading on the ghostlayer points for large runs, since
future architectures will have millions or even billions of cores. In
particular, if p becomes large, the surface of the domain becomes
negligible, and we get the following result that we refer to as the
“ghostlayer ratio”:

ρL(s) = lim
p→∞

νL(1)
νL(s)

= 4/(
2
sz

+
1
sy

+
1
sx

). (2)

Note that for the Laplace problem, if we choose 16 threads, i.e.
sx = sy = 2, and sz = 4, ρL(16) = 2.67. On Jaguar, we chose
somewhat different sizes to enable numbers that can be divided by
6 and 12. Here, Nx = Ny = N , Nz = 0.9N , px = py = 4p, and
Inserting these numbers into Equation 1, one obtains the following
ratio for Jaguar

ρJ
L(s) = 17/(

5
sz

+
6
sy

+
6
sx

). (3)

For 12 threads, with sx = sy = 2 and sz = 3, ρJ
L(12) = 2.22.

The MG problem is generated starting with the grid given in
Figure 2, and its uniform extension into the third dimension. It
consists of eight parts with ni

x×ni
y×nz points each, i = 0, ..., 7,

with nz = 4 and the ni
x and ni

y as shown in Figure 2. It then
is further refined using the refinement factors Rx = pxrx, Ry =
pyry and Rz = pzrz , requiring 8pxpypz cores. The surface of
the total grid consists of 192RxRy +240RxRz +64RyRz points.
If we include threads and define p̃k and sk for k = x, y, z, as
above, we need to define new refinements r̃k, k = x, y, z, with
r̃k = skrk to ensure that we solve the same problem. Note that
r̃kp̃k = Rk. Combining this information, one can determine the
total number of ghost layer points:

νMG(s) =
7∑

i=0

2(ni
xni

yRxRy
pz

sz

+ni
xni

zRxRz
py

sy
+ ni

yni
zRyRz

px

sx
)

−192RxRy − 240RxRz − 64RyRz

= 192(
pz

sz
− 1)RxRy + (224

py

sy
− 240)RxRz

+(200
px

sx
− 64)RyRz.

On Hera and Intrepid, we will consider two versions of the
MG-problem. For the first version, denoted “MG-1”, we choose
px = py = 2p, and pz = 4p, as for the Laplace problem. For the
second version, denoted “MG-2”, px = py = 4p, and pz = 2p.
On Jaguar, we consider only one problem, denoted “MG-J” with
px = py = 4p and pz = 3p. For all cases rx = ry = rz = 12,
leading to Rx = ry = 24p and Rz = 48p for MG-1, Rx = Ry =
48p and Rz = 24p for MG-2 and Rx = Ry = 48p and Rz = 36p
for MG-J. Using this information, we can compute the following
ratios

ρMG−1(s) = ρMG−2(s) = ρMG−J(s) =
77

24
sz

+ 28
sy

+ 25
sx

. (4)

For 16 threads defined as in the Laplace case, ρMG = 2.37. So,
we would expect threading to be not quite as effective for the MG
problem than for the Laplace problem. For 12 threads, if defined
as above, ρMG = 2.23, which is similar to the Laplace problem
as defined for Jaguar.

IV. MULTICORE ARCHITECTURES

We study the performance of AMG on three widely differ-
ent architectures: a traditional multi-core, multi-socket cluster
connected by Infiniband (Hera), a Dual-Hex Core Cray XT-5
with a custom 3D torus/mesh network (Jaguar), and a Quad-
core BlueGene/P architecture with a custom 3D torus network
(Intrepid).

A. Quad-Core/Quad-Socket Opteron Cluster (Hera)

Our first test machine is a tradtional multi-core/multi-socket
cluster solution at Lawrence Livermore National Laboratory
named Hera. It consists of 864 diskless nodes interconnected
by Quad Datarate (QDR) Infiniband (accessed through a PCI
card). Each node consists of four sockets, each equipped with
an AMD Quadcore (8356) 2.3 GHz processors. Each core has its
own L1 and L2 cache, but the 2 MB L3 cache is shared by all
four cores located on the same socket. Each processor provides
its own memory controller and is attached to a fourth of the
32 GB memory per node. Accesses to memory locations served
by the memory controller on the same processor are satisfied
directly, while accesses through other memory controllers are
forwarded through the Hypertransport links connecting the four
processors.Therefore, depending on the location of the memory,
this configuration results in non-uniform memory access (NUMA)
times. depending on the location of the memory.

Each node runs CHAOS 4, a high-performance computing, yet
full featured Linux variant based on Redhat Enterprise Linux. All
codes are compiled using Intel’s C and OpenMP/C compiler (Ver-
sion 11.1) and use MVAPICH over IB as the MPI implementation.

B. Dual Hex-Core Cray XT-5 (Jaguar)

Our second test platform is the Cray XT-5 system Jaguar 1

installed at Oak Ridge National Laboratory. It consists of 18,688
nodes organized in 200 cabinets. Each node is equipped with two
sockets holding an AMD Opteron Hex-core processor each, as
well as 16 GB of main memory split between the two memory
controllers of the two sockets, leading to a similar NUMA
architecture as seen on Hera. The nodes of the XT-5 are connected
with a custom network based on the SeaStar 2+ router. The
network is constructed as 3D torus/mesh with wrap-around links
(torus-like) in two dimensions and without such links (mesh-like)
in the remaining dimension.

All applications on Jaguar use a restricted subset of Linux,
called Compute Node Linux (CNL). While it provides a Linux like
environment, it only offers a limited set of services. On the upside,
it provides a lower noise ratio due to eliminated background
processes. The scheduler on the Cray XT-5 aims at a compact
allocation of the compute processes on the overall network, but
if such a compact partition is not available, it will also combine
distant nodes (w.r.t., to network hops) into one partition.

We used PGI’s C and OpenMP/C compilers (v 9.04) and
experimented with the two different OpenMP settings in the
PGI compiler: -mp=nonuma and -mp=numa to disable and
enable optimizations for NUMA architectures (which mainly
consist of preemptive thread pinning as well as localized memory
allocations). Further, we used Cray’s native MPI implementation,
which is optimized for the SeaStar network.

1Precisely, we are using Jaguar-PF, the newer XT-5 installation at ORNL.



C. Quad-Core Blue Gene/P Solution (Intrepid)

The final target machine is the tightly integrated Blue Gene/P
system at Argonne National Laboratory named Intrepid. This
system consists of 40 racks with 1024 compute nodes each and
each node contains a quad-core 850 MHz PowerPC 450 Processor
bringing the total number of cores to 163,840. In contrast to the
other two systems, all four cores have a common and shared
access to the complete main memory of 2 GB. This guarantees
a uniform memory access (UMA) characteristics. All nodes are
connected by a 3D torus network and application partitions are
always guaranteed to map to an electrically isolated proper subset
of the nodes organized as a complete torus with wrap-around in
all three dimensions.

On the software side, BG/P systems use a custom compute
node kernel that all applications have to link to. This micro
kernel provides only the most basic support for the application
runtime. In particular, it only supports at most one thread per
core, does not implement preemption support, and does not enable
the execution of concurrent tasks. The latter has the side effect
that executions are virtually noise free. All major functionality,
in particular network access and I/O, is function shipped, i.e.,
remotely executed on a set of dedicated I/O nodes associated
with each partition. We compiled all codes using IBM’s C and
OpenMP/C compilers v9.0 and used IBM’s MPICH2-based MPI
implementation for communication.

V. PERFORMANCE RESULTS

In this section we present the performance results for Boomer-
AMG on the three multicore architectures and discuss the notable
differences in performance. On each machine, we investigate an
MPI-only version of AMG, a version that uses OpenMP across all
cores on a node and MPI for inter-node communication, as well as
intermediate versions that use a mix of MPI and OpenMP on node.
For each experiment, we utilize all available cores per node on the
respective machine. We look at the AMG setup times and either
the AMG solve time or AMG cycle time (the latter is used for the
Laplace problem, where the number of iterations to convergence
varies across experimental setups, from 17 for 128 cores to 37
for 128,000 cores). In addition, for Hera and Jaguar, which are
NUMA systems, we include an optimized OpenMP version that
we developed after careful analysis of the initial results. This
optimized version, labeled ’MCSUP’ in the figures, is described
and discussed in detail in Section VI-B (and is, therefore, not
discussed in this section).

A. Hera: AMD Opteron Quad-core

We investigate the performance of AMG-GMRES(10) on the
Laplace and MG problems on the Hera cluster. For the Laplace
problem, we obtained weak scaling results with 100× 100× 100
grid points per node on up to 729 nodes (11664 cores). We scaled
up the problem setting px = py = 2p and pz = 4p leading to 16p3

cores with p = 1, ..., 9. The AMG-GMRES(10) setup and cycle
times for the Laplace problem are given in Figures 3a and 3b,
respectively. Recall that Hera has four quad-core processors per
node, and we use all 16 cores on each node for all experiments.
Therefore the “MPI” and “OMP” labels indicate the use of 16 MPI
tasks or 16 OpenMP threads per node, respectively. The mixed
on-node models are denoted with the label MIX‘k’ where k is
the number of OpenMP threads per MPI process, i.e., “MIX8”

TABLE I: Timings (in seconds) for the MG-1 Problem on Hera.

Procs MPI Mix8 Mix4 Mix2 OMP MCSup

Setup 256 2.3 1.5 1.5 2.2 3.8 3.8
2048 25.1 6.5 2.7 3.0 5.1 5.1

Solve 256 2.0 1.9 1.9 3.7 7.3 2.7
2048 4.2 3.1 2.3 4.3 8.2 3.3

translates to the use of 2 MPI tasks per node with 8 OpenMP
threads each. For the MG-2 problem, we ran on up to 512 nodes
(8192 cores) with 1,327,104 grid points per node (82,944 per
core), with rx = ry = rz = 12 and px = py = 2p and pz = 4p,
for p = 1, 2, 3. AMG-GMRES(10) setup and solve times for the
MG-2 problem are given in Figures 3c and 3d. For the MG-1
problem, we ran on up to 128 nodes (2048 cores), with rx =
ry = rz = 12 and px = py = 4p and pz = 2p, with p = 1, 2,
and, because the results are similar to MG-2, we simply list them
in Table I.

First we examine the setup phase for both problems ( Figures 3a
and 3c). The eye-catching trend in these figures is the extremely
poor performance for the MPI-only programming model. The
algorithms in the setup phase are complex and contain a large
amount of non-collective communication. With 16 MPI tasks
per node, the code creates a high aggregated messaging rate
across each node leading to a high pressure on the Infiniband
network card, which further increases with growing node count.
The commodity Infiniband interconnect is simply not well-suited
for this kind of traffic and hence turns into a bottleneck causing
an overall slowdown.

In the setup phase, MIX4, corresponding to a single MPI tasks
per socket, initially obtains the best performance since it maps
well to the machine architecture. However, for the largest node
count it is surpassed by MIX8, which can again be attributed to
the the network and the higher messaging rate needed to sustain
the MIX4 configuration compared to MIX8.

The solve phase is less complex than the setup and mainly
depends on the MatVec kernel. Its MPI performance (Figures 3b
and 3d) is significantly better, and the OpenMP on-node version
performs worst. This bad performance can be directly attributed to
the underlying machine architecture and its NUMA properties, and
we will discuss this as well as a solution to avoid this performance
penalty in more detail in Secton VI-B.

B. Jaguar: Cray XT5, AMD Opteron hex-core

On Jaguar, we had to slightly change the Laplace problem
and the MG problem to enable the use of 6 and 12 threads. For
the Laplace problem, we chose Nx = Ny = 100p, Nz = 90p,
px = py = 4p, and pz = 3p, leading to 18,750 grid points per
core. We obtained results for this problem for p = 2, 4, 8 and
show the resulting setup times in Figure 4a and the cycle times in
Figure 4b. The number of iterations varied from 18 iterations for
the smallest problem to 25 or 26 iterations for the largest problem.
For the MG problem, we used rx = ry = rz = 12, px = py = 4p,
and pz = 3p with p = 1, 2, 4. Keep in mind that there are 8 parts,
and therefore the total number of cores is 8×px×py×pz , leading
to runs with the same number of cores as the Laplace problem,
but larger numbers of grid points per core.

The results are comparable to those on Hera, which is not
completely surprising, since both machines are NUMA archi-
tectures and are based on a similar multi-socket/multi-core node
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(a) Setup times for AMG-GMRES(10) on the Laplace problem.
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(b) Cycle times for AMG-GMRES(10) on the Laplace problem.
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(c) Setup times for AMG-GMRES(10) on the MG-2 problem.
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(d) Solve times for AMG-GMRES(10) on the MG-2 problem.

Fig. 3: Timings on Hera

design. However, Jaguar features a custom interconnection net-
work designed to withstand higher messaging rates than the
Infiniband interconnect on Hera, allowing significantly better
performance for one thread per process cases 2 For the solve
phase, the MPI-only version shows better scalability, and behaves
now similarly to numa and nonuma (OpenMP with the NUMA
optimization enabled and disabled, respectively, c.f Section IV-B).
The overall best performance is obtained through nonuma6 fol-
lowed by numa6, which both use 6 threads per MPI task, i.e,
use threading within one socket (analog to using MIX4 on Hera).
Numa12 and nonuma12, which use 12 threads per node, show
worse performance, which is again caused by the NUMA node
architecture, similar to the OpenMP only case on Hera.

C. Intrepid: IBM BG/P Quad-core
Blue Gene/P systems, like Intrepid, provide only a restricted

operating system environment with a static task distribution.
Codes can be run in one of three modes, Symmetric Multi-
Processing (SMP), Dual (DUAL), and Virtual Node (VN), which
determines the number of possible MPI tasks and threads. Our
results are labeled accordingly. In SMP mode, we execute a single
MPI process and use four threads per node; in DUAL mode we
use two MPI processes with two threads each; and in VM mode,
we use four MPI tasks per node with a single thread each. The
latter configuration we run with two binaries, a plain MPI code
without OpenMP (labeled “vn”) and the OpenMP code executed
with a single thread (labeled “vn-omp”).

2We see a significantly worse performance for the MPI-only/no OpenMP case,
which we believe to be an outlier caused by external conditions. We will verify
this for the final paper.

First we examine the weak scaling results for the Laplace prob-
lem on Intrepid with 250,000 grid points per node on up to 32,000
nodes (128,000 cores). The results for the AMG-GMRES(10)
setup and cycle time (Figures 5a and 5b, respectively) show that
the “vn” experiment, corresponding to the MPI-only model, is the
generally the best-performing for both the setup and solve phase,
although the solve cycle times are quite similar. This result is in
stark contrast to the experiments on Hera, where the MPI-only
model shows a significantly higher overhead. This is caused by
the custom network on the BG/P system, which is designed to
withstand higher messaging rates.

Overall, we see a good weak scaling behavior; only the times
on 27,648 and 128,000 cores is slightly elevated due to the less
optimal processor geometries compared to the 65,538 and 8192
core runs, which are both powers of two. For the setup phase,
we see more variation in the results, and the “smp” case is the
clearly worst performing, while the “dual” and “vn” experiments
are quite similar. The problem partitioning likely does not play
a role on this problem, with the “dual” case partition having the
slight advantage of each MPI task subdomain being a perfect cube.
The slower “smp” performance in the setup is likely due to the
fact that the percentage of time spent in the nonthreaded portion
of the setup phase increases with increasing number of threads as
well as due to overhead associated with threading.

Since this effect becomes even more pronounced for the MG
problem, we have listed timings for the MG-1 problem run on
32 nodes with at most 128 cores in Table II. Here we have also
listed the times that one gets solving the same problem in MPI-
only mode using 32, 64 and 128 MPI tasks. One can clearly see
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(b) Cycle times for AMG-GMRES(10) on the Laplace problem.
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Fig. 4: Timings on Jaguar

TABLE II: Timings (in seconds) for the MG-1 Problem with
10,616,832 grid points on Intrepid using at most 128 cores.

Programming 128 MPI 64 MPI 32 MPI
model tasks tasks tasks

Setup MPI only 2.0 4.3 11.6
MPI-OMP 2.5 4.0 7.1

Solve MPI only 3.8 7.4 14.7
MPI-OMP 3.8 4.1 4.3

TABLE III: Ghostlayer ratios for various numbers of threads

s ρL(s) ρMG−1(s) ρMG−2(s)

2 1.33 1.18 1.18
4 1.60 1.31 1.51

the time improvement achieved by using two or 4 threads within
each MPI task. In the setup phase the use of two threads leads to
a speedup of 1.08, and 4 threads speed up the code by a factor of
1.72. However in the solve phase the speedup for two threads is
1.80, and for 4 threads 3.42. The use of OpenMP with one thread
only shows a 25% overhead in the setup phase, whereas the solve
phase performance is similar.

Now we take a look at the scaling results for the two variants
of the MG problem. For the MG-1 problem, we ran on up to
16,384 nodes (65,536 cores) with 331,776 grid points per node,
and results for the setup and solve phase are given in Figures 5c
and 5d. For the MG-2 problem, we ran on up to 32,768 nodes
(131,072 cores) with 331,776 grid points per node, and results for

the setup and solve phase are given in Figures 5e and 5f. Like for
the Laplace problem, we see that the MPI-only model (“vn”) is
the best-performing. Again, the differences in the solve phase are
less pronounced than in the more-complex setup phase. Notice
that for this more complicated grid, while the setup phase and
solve phase take about the same amount of time in the “vn” case,
the setup is considerably more expensive for the “smp” case. The
“dual” mode is also more expensive than “vn” in the setup (unlike
for the Laplace), indicating a limit to the parallelism that we can
achieve with the threads on this more complex grid. Furthermore,
on Intrepid, unlike Hera, we see that the performance of the “smp”
case is not the same for the two different aspect ratios of the
MG problem. Essentially, the “smp” performance is worse on
MG-1, where the problem has been stretched in the z-direction.
Now let us determine ρL, ρMG−1 and ρMG−2. For two threads
sx = sy = 1 and sz = 2 for all three problems. For four threads
sx = sy1 and sz = 4 for Laplace and MG-1, whereas sx = 1
and sy = sz = 2 for MG-2. The actual values for ρ are listed in
Table III. Overall the ratios for the Laplace problem are better than
for MG-1 and MG-2, but while the ratios are equivalent for two
threads, when using 4 threads the partitioning for MG-1 is worse
than that for MG-2, explaining some of its worse performance.

VI. LESSONS LEARNED

The measurements presented in the previous section reflect the
performance of a production quality MPI code with carefully
added OpenMP pragmas. It hence represents a typical scenario
in which many application programmers find themselves when
dealing with hybrid codes. The, in parts, poor performance shows
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(b) Cycle times for AMG-GMRES(10) on the Laplace problem.
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(c) Setup times for AMG-GMRES(10) on the MG-1 problem.
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(e) Setup times for AMG-GMRES(10) on the MG-2 problem.
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(f) Solve times for AMG-GMRES(10) on the MG-2 problem.

Fig. 5: Timings for problems on Intrepid.

how difficult it is to deal with hybrid codes on multicore platforms,
but it also allows us to illustrate some lessons learned that help
in optimizing the performance of AMG as well as other codes.

A. Network Performance vs. On-node Performance
AMG, as many of its related solvers in the hypre suite like

SMG [16], are known to create a large amount of small messages.
Consequently, it requires a network capable of sustaining a high
messaging rate. This situation is worsened by running multiple
MPI processes on a single multi-socket and/or multi-core node,
since these processes have to share network access, often through
a single network interface adapter.

We clearly see this effect on Hera, which provides both the
largest core count per node and the weakest network: on this
platform the MPI only version shows severe scaling limitations.
Threading can help against this effect since it naturally combines
the message sent from multiple processes into a single process.

Consequently, the MIX4 and MIX8 version on this platform
provides a better performance than the pure MPI version.

On the other two platforms, the smaller core count and the
significantly stronger networks that are capable of supporting
larger messaging rates, allow us to efficiently run the MPI only
version at larger node counts. However, following the expectations
for future architectures, this is a trend that we are likely unable
to sustain: the number of cores will likely grow faster than the
capabilities of the network interfaces and eventually a pure MPI
model, in particular for message bound codes like MPI, will no
longer be sustainable making threaded codes a necessity.

B. Correct Memory Associations and Locality
In our initial experiments on the multi-core/multi-socket cluster

Hera we saw a large discrepancy in performance between running
the same number of cores using only MPI and running with a
hybrid OpenMP/MPI version with one process per node. This



behavior can be directly attributed to the NUMA nature of the
memory system on each node: in the MPI only case, the OS
automatically distributes the 16 MPI tasks per node to the 16
cores. Combined with Linux’s default policy to satisfy all memory
allocation requests in the memory that is local to the requesting
core, all memory accesses are executed locally and without any
NUMA latency penalties. In the OpenMP case, however, the
master thread allocates the memory that is then shared among
the threads. This leads to all memory being allocated on a single
memory bank, the one associated with the master thread, and
hence to remote memory access penalties as well as contention
in the memory controller responsible for the allocations.

To fix this, we must either allocate all memory locally in
the thread that is using it, which is infeasible since it requires
a complete rewrite of most of the code to split any memory
allocation to per thread allocations, or we must overwrite the
default memory allocation policy and force a distribution of
memory across all memory banks. The latter, however, requires
an understanding of which memory is used by which thread and
a custom memory allocator that distributes the memory based on
this information.

For this purpose, we developed a multi-core support library,
called MCSup, that provides a set of new NUMA-aware memory
allocution routines, which allow programmers to explicitly spec-
ify which threads use which regions of the requested memory
allocation. Each of these routines provides the programmer with
a different pattern of how the memory will be used by threads in
subsequent parallel regions. Most dominant in AMG is thereby
a blocked distribution, in which each thread is associated with a
contiguous chunk of memory of equal size. Consequently, MCSup
creates a single contiguous memory region for each memory
allocation request and then places the pages according to the
described access pattern.

MCSup first detects the structure of the node it is executing
on, i.e., determines the number of sockets and cores as well as
their mapping to OpenMP threads, and then uses this information,
combined with the programmer specified patterns, to correctly
allocate the new memory. MCSup itself is implemented as a
library that has to be linked the application source code. It uses
Linux’s numalib to get low level access to page and thread
placement; the programmer only has to replace the memory
allocations intended for cross thread usage with the appropriate
MCSup routines.

The figures in Section V-A show the results obtained when
using MCSup (labeled “MCSup”): with MCSup, the performance
of OpenMP in the solve phase is substantially improved. We note
that in the setup phase the addition of MCSup had little affect on
the OpenMP performance because the setup phase algorithms are
such that we are able to allocate the primary work arrays within
the threads that use them (as opposed to allocation by the master
thread as is required in the solve phase). Overall, though, we see
that the performance with MCSup now rivals the performance of
MPI only codes.

We see a similar trend on Jaguar: with its dual socket node ar-
chitecture, it exhibits similar NUMA properties as Hera. However,
due to limitations in the restricted Linux kernel (which we will
discuss in more detail in Section VI-E) MCSup is not effective
enough to enable an optimal execution of 12 threads per node.
Running 6 threads per node, though, will match the number of

MPI tasks with the number sockets and hence naturally keep
memory allocations local.

C. Per Socket Thread and Process Pinning

The correct association of memory and threads ensures locality
and the avoidance of NUMA effects, however, only as long as
this association does not change throughout the runtime of the
program. None of our two NUMA platforms actively migrates
memory pages between sockets, but on the Hera system with its
full featured Linux operating system, thread and processes can get
scheduled across the entire multi-socket node, which can destroy
the carefully constructed memory locality.

It is therefore necessary to pin threads and and processes to
the appropriate cores and sockets, such that the memory/thread
association determined by MCSup is maintained throughout the
program execution. Note, that MCSup special memory allocations
are only required if the threads of a single MPI process span
multiple sockets; otherwise, pinning the threads of an MPI process
to a socket is sufficient to guarantee locality, which we clearly
see in the good performance of the MIX4 case on Hera and the
6 thread case on Jaguar.

D. Performance Impact of OpenMP Constructs

On Intrepid we see a large difference in performance of the
setup phase between the MPI version (“vn”) and the OpenMP
version run with a single thread (“vn-omp”). Since the thread
configuration is the same for those two versions, this overhead
must stem from the OpenMP runtime system.

We traced the overhead back to a single routine in the setup
phase — hypre_BoomerAMGBuildCoarseOperator. This
routine contains four OpenMP for regions, each of them looping
over the number of threads, with region three and four dominating
the execution time. The timings for those regions along with
the number of data loads and branch instructions are shown in
Table IV.

The code of this function describes the (complex) setup of the
matrix. It was manually threaded and uses a for loop to actually
dispatch this explicit parallelism. However, we can replace the
more common for loop with an explicit OpenMP parallel region,
which implicitly executes the following block once on each
available thread. While the semantics of these two constructs in
this case is equivalent, the use of a parallel region slightly slows
the execution, in particular in region 4.

Further, we find that both regions use a large number of private
variables. While these are necessary for correct execution in the
threaded case, we can omit them in the single thread case. This
change has no impact on the code using an OpenMP for loop,
but when removing private variables from the OpenMP parallel
regions, the performance improves drastically from 47% to 16%
overhead for region 3 and 31% to 10% for region 4.

We can see these performance trends also in the corresponding
hardware performance counter data, also listed in Table IV, in
particular the number of loads and the number of branches
executed during the execution of these two regions. This can most
likely be attributed to the outlining procedure and the associated
changes in the code needed to privatize a large number of variables
as well as additional book keeping requirements.

Based on these findings we are currently in the process of
rewriting the code to reduce the number of private variables, such



Region 3 Time (s) Rel. time Loads Branches
No OMP 20.09s 100% 100% 100%
OMP for loop 29.33s 146% 138% 150%
OMP for no priv. 29.35s 146% 137% 148%
OMP par. region 29.54s 147% 146% 152%
OMP reg. no priv. 23.32 116% 107% 103%

Region 4 Time (s) Rel. time Loads Branches
No OMP 42.60s 100% 100% 100%
OMP for loop 52.29s 123% 119% 132%
OMP for no priv. 52.41s 123% 119% 133%
OMP par. region 55.80s 131% 121% —
OMP reg. no priv. 46.92 110% 98% 98%

TABLE IV: Cumulative timings and hard-
ware counter data for two OpenMP regions in
hypre_BoomerAMGBuildCoarseOperator comparing
code versions without OpenMP (baseline) to using an OpenMP
for loop and an OpenMP parallel region each with and without
private variables (128 MPI tasks, 1 thread per task, BG/P, problem
MG-1)

that this performance improvement can be carried over in the
threaded case. We will include those numbers in the final paper.

E. Understanding the Impact of Specialized Compute Kernels

Specialized compute kernels, such as Blue Gene’s Compute
Node Kernel (CNK) or Cray’s Compute Node Linux (CNL),
have been introduced to improve performance, since they reduce
concurrent activities and thereby help to prevent noise, which is
known to cause severe scalability problems.

However, since the kernels are restricted in their functionality,
some services may longer be available or create a higher overhead
than on full featured operating systems. We ran into this with
MCSup on the Jaguar system: when executing an MCSup enabled
code with a single thread per MPI task we saw enormous over-
heads of almost a factor 100. This overhead comes directly from
MCSup’s interaction with Jaguar’s implementation of libnuma.
It seems to create a massive contention in the OS, most likely
during page table accesses and is unusable for this scenario.

On the other end of the spectrum, running with 12 threads per
task performs worse then an execution with 6 threads and 2 MPI
processes. In this case, the use of MCSup would be essential
to guarantee a fair memory distribution. However, MCSup is
not effective in this scenario either, since it fails to correctly
allocate pages due to CNL’s implementation of libnuma or since
libnuma’s overheads eliminates all savings. While we are still
investigating the details of this performance anomaly, it is clear
that neither variant leads to a production worthy environment and
that, similar to the conclusions from above for Hera, it is best to
run with one MPI process per socket.

VII. CONCLUSIONS

This paper presents a comprehensive study of a state-of-the-
art Algebraic Multigrid (AMG) solver on three large scale multi-
core/multi-socket architectures. These kinds of systems already
now cover a large part of the HPC space and will be dominating in
the future. Good and (even more important) portable performance
for key libraries, like AMG, on such systems will therefore be
essential for their successful use. However, our study shows that
we are still far from this goal, in particular with respect to
performance portability.

The discussion in the previous section illustrates the many
pitfalls waiting for developers of hybrid OpenMP/MPI codes.
In order to achieve at least close to optimal performance, it is
essential to guarantee memory locality, in particular in NUMA
systems. Further, in order to maintain this locality, it is advised
to turn off any kind of thread or process migration across
sockets; threads of an MPI process should always be kept on
the same socket to achieve both memory locality and minimize
OS overhead. Further, as the example in Section VI-D shows,
it is imperative to select the correct OpenMP primitive for a
particular task, especially if multiple, equivalent pragmas are
available and to reduce the number of private variables, since
they infer additional bookkeeping. Finally, many systems provide
only restricted operating systems, which may lead to severe
performance anomalies when executed together with system-level
libraries such as MCSup.

Overall, our results show that the performance and scalability
of AMG on the three multicore architectures is quite varied and a
general solution for obtaining good multicore performance is not
possible without considering the specific target architecture, incl.
node architecture, interconnect, and operating system capabilities.
In many cases it is left to the programmer to find the right
techniques to extract the optimal performance and the choice of
techniques is not always straightforward. With the right settings,
however, we can achieve a performance for hybrid OpenMP/MPI
solutions that is at least equivalent to the existing MPI model, yet
has the promise to scale to numbers of nodes that prohibit the use
of MPI only applications.
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